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Abstract

Using images and data acquired from the GLORIA sonar system, 390 seamounts within the U.S. Hawaiian
Exclusive Economic Zone (HEEZ) off Hawaii have been studied. Their diameters range from 1 to 57 km, with most
less than 15 km. Seamount abundance increases exponentially with decreasing size. The areal density of observed
seamounts having diameters greater than I km is 182/106 km z. The theoretical abundance of seamounts of all sizes
normalized to a unit area is (309_+ 17)/106 km 2, about an order of magnitude less than other surveyed areas of the
Pacific. This may reflect a lower abundance of Cretaceous seamounts in this region, the covering of small seamounts
by sediment, or discrepancies from the use of different data sets to derive the abundance statistics. The seamounts
have morphologies ranging from steep-sided, flat-topped structures to cones to more amorphous structures; they are
similar to volcanoes found elsewhere on the seafloor. A suite of secondary features associated with the seamounts
includes summit craters, summit mounds, coalesced boundaries, landslides, and graben. Several seamount chains are

aligned parallel to Cretaceous fracture zones, consistent with an origin close to the ancestral East Pacific Rise. Others
are aligned parallel to the Necker Ridge, suggesting that they formed contemporaneously with Necker in the plate
interior. This observation, together with high abundances of seamounts where other intraplate igneous processes have
occurred, suggests some seamounts formed since leaving the spreading center. © 1997 Elsevier Science B.V.

Keywords. Seamounts; Hawaii; GLORIA sonar; North Arch lava flow; Musicians seamounts

1. Introduction

The oceanic crust surrounding the Hawaiian

Islands was created at the East Pacific Rise (EPR)

approximately 70 130 Myr ago (Atwater and

Severinghaus, 1988). Relict tectonic features from

the time of spreading include the Murray and

Molokai Fracture Zones (FZ's) and the seafloor

_Present address: Jet Propulsion Laboratory, MS 230 235, 4800

Oalc Grove Dr., Pasadena, CA 91109, USA. Tel.: (818)

393-7799; fax: (818) 393-1227;

e-mail: nathan.bridges@jpl.nasa.gov.

fabric perpendicular to them (Fig. 1). Other tec-
tonic features of enigmatic origin and age include

the Necker and other unnamed ridges, which trend

obliquely to the seafloor fabric, indicating that
they probably formed in the Pacific Plate interior
at a later time. Hawaiian hotspot volcanism and

the resulting islands and their products have also
modified the seafloor. The region is dominated by

the Hawaiian Ridge, a string of subaerial and

subaqueous volcanoes erupted from the Hawaiian
hotspot and carried successively northwest by
movement of the Pacific Plate (Clague and

Dalrymple, 1989). The load of the Ridge has

0025-3227/97/$17.00 © 1997 Elsevier Science B,V. All rights reserved.
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caused lithospheric flexure, producing a discontin-

uous moat known as the Hawaiian Deep ranging

in depth from _4000 to _5600m (Fornari and

Campbell, 1987; Moore, 1987; Moore et al., 1989).

The Deep is filled with debris sh_ed from the islands

in the form of slump blocks and giant landslides,

some of which lap onto the Deep's outer edges

(Moore et al., 1989, 1994). Outside of this depres-
sion is the Hawaiian Arch, a low (200 m) and

broad upbowing of the seafloor resulting from

flexural compensation of the displaced material of

the Deep (Wessel, 1993; Wessel and Keating, 1993;

Moore et al., 1994). The North Arch, between the

Murray and Molokai FZ's, contains a large
Pliocene Pleistocene alkalic lava flow field that is

clearly visible in sonar imagery (Fig. 2a; Clague

et al., 1990).

Seaward of the Deep are hundreds of seamounts,
most of which have not been sampled or described.

Some of these, such as Loihi southeast of the Big

Island, result from volcanism associated with the

Hawaiian hotspot. North of the main islands,

another hotspot on young (<15 Ma) crust near

the ancestral EPR may have formed some of the

Musicians seamounts (Pringle, 1993). In the pre-

sent day, the most prolific site for seamount genesis

in the Pacific is adjacent to the axis of the EPR

(Smit h an d Jordan, 1988; Smith, 1991; Scheirer
and MaCdbnald, 1995). Thus, it is reasonable to

assume_ tla_t many, if not most, of the seamounts
seen n_ear Hawaii also formed near the EPR and

are thus nearly the same age as the underlying
crust.

Due to the scarcity of samples and in situ
reconnaissance studies of these and other sea-

mounts, studies rely heavily on sonar and other

remote sensing methods. This paper discusses the

seamounts near Hawaii as viewed by the GLORIA

sonar. The primary purposes of this work are: (1)
to document the characteristics, distribution, and

associations of the seamounts; (2) to compare the
seamounts to others elsewhere in the Pacific; and

(3) discuss what the sonar data allows us to infer

about the seamounts' origin.

2. Data and methods

The region examined in this study, the U.S.
Hawaii Exclusive Economic Zone (HEEZ) has an

area of 2.38 x 106 km z and an irregular boundary

bounded by 15-33_N and 151-W 178_E (Fig. i).

Mapping of the HEEZ with the Geologic LOng
Range Inclined ASDIC (GLORIA) digital side-scan

sonar system took place during 1986 1991. The
source and receiver of the sonar were located in a

"fish" towed _200 m behind the ship (Gardner,

1992). Sonar pulses were emitted about every 30

s. The seafloor was imaged on either side of the

ship track out to an average horizontal distance
of _ 12.5 km at a spatial resolution of _50m.

The energy or amplitude of the returned signals
was stored as digital data. These were then com-

bined into images depicting backscatter intensity

as shades of gray, with white corresponding to the

highest energy. High backscatter results from sur-
faces that are rough at the scale of the GLORIA

sonar wavelength (22-24 cm, or 6.3 and 6.7 kHz;

Geyer, 1992), such as lava, or from slopes oriented

perpendicular to the beam path. In addition to the
backscatter sonar information, depth at nadir was
recorded with a wide-beam echo sounder at a

vertical resolution of _ 1 m (W. Normark, pers.

commun., 1994).

Fig. 1. Maps of the distribution of seamounts found in the GLORIA mosaic of the Hawaiian Exclusive Economic Zone (see text for

identification criteria). Light. straight lines define the boundary of the map area. Dark shaded region is the approximate area of the

Hawaiian Ridge. Area labeled Musicians Seamounts is southern part of area containing large seamounts of this name. Labels for

fracture zones and the Necker Ridge are along approximate trends and locations. Numbered boxes are normal magnetic anomalies

(from map of Atwater and Severinghaus, 1988): anomaly 33-_75 80.5 Ma, 34_<84.5 Ma, Mo_l18 Ma, M_122 Ma,

M3_[23.5 125.5Ma, Ms_I27Ma).

a. Distribution map as a function of seamount diameter.

b. Distribution map showing prominent seafloor features. The Hawaiian Dccp is shown in light outline around the east end of the

ridge. Rectilinear outline to north of eastern ridge is the approximate boundary of the North Arch lava flow field. Delineation of the

Necker Ridge is shown as a dark outline. Lettered boxes are the boundaries of the images in Fig. 2.
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(a)

(b)

(c) (d)

Fig. 2. GLORIA images of seamounts in the HEEZ. Brightness is proportional to sonic backscatter. Prominent horizontal lines

delineate ship tracks. Black arrow in all pictures indicates north. Coordinates at the end of each caption are the approximate latitudes

and longitudes at the center of the image. Outlines of the images are shown in Fig. lb.

a. Field near the Musicians seamounts. Note the alignment of some of the constructs, direction of which are shown by arrows.

The western portion of the North Arch lava flow field (NA) is seen as a sonar-bright region on the right-hand side of the image

(24-N, 160-W).

b. Lft: Image of seamount field. Seamount with a truncated edge is indicated by A. It appears to have a crater in its ccnter, as

does the large volcano in the upper right (B). Far left volcano is representative of a hcap (C), and the small, bright volcano at center-

right is a typical cone (D) (23_N, 169-W). Right: Sketch of seamount field. IIorizontal and vertical douhh, lines are boundaries between

mosaic pieces. Horizontal single litres are ship tracks. Seamount boundaries and features delineated as solid where certain, dashed

where uncertain. Hatchures = crater; diagonal line fill= sonar-bright edge; dark fill= sonar shadow; stipples= landslide deposit.

c. A large irregular heap seamount (upper left, A) and two coalesced pancake volcanoes (lower left, B and C) (28 N, 178_E). D

is the seamount shown in profile in Fig. 7.

d. A seamount fairly representative of the pancake class (A). It is illuminated on both sides because mosaic frames are joined

through its center (22-N, 170 W).
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(e) (f)

(g)

(h)

Fig. 2.c. Seamount with two large craters (A and B). Bright tcrrain in upper right is a portion of the North Arch lava flow field

(24_N, 159.5_W).

f. Elongated seamount with a large crater (24_N, 16FW).

g. Coalesced seamounts. Note mound atop the right volcano, indicated by an arrow (28.5_N, i72-W).

h. L_ft: Image of seamount field. Mounds on seamount summits are shown by arrows. Bright material on SW flank of seamount

labeled L may be a landslide deposit (23.CN, 159.8_W). Right: Sketch of seamount field. Nearly horizontal lines cutting across image

are ship tracks. Seamount boundaries and features delineated as solid where certain, dashed where uncertain, ttatchures=mound;

diagonal line fill= sonar-bright edge; dark fill= sonar shadow; stipples = landslide deposit.
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(i)

Fig. 2.i. Seamount disrupted by a graben (25.3 "N, 161.2W).

In this study, the GLORIA sonar image mosaic

of the Hawaii EEZ was used to identify and
visually inspect seamounts distal from the

Hawaiian Ridge. The mosaic consists of individual

side-scan sonar imagery strips pasted together par-

alIel to the ship tracks (Fig. 2b) and provides a

synoptic view of the HEEZ. The distinguishing

characteristics used to identify volcanic constructs
as "seamounts" were a circular to semi-circular

outline and a sonar-brightness different than the

surrounding seafloor. This term is not restricted

to a specific size range or mode of origin.

To subdivide the seamount population, a quali-
tative classification was applied to each volcano.

Constructs with a generally equant shape and a

fairly uniform, bright appearance on the sonar-

facing side were classified as "cones" (Fig. 2b).

These were interpreted as more or less conical

structures lacking wide, flat tops. At the other end

of the scale, seamounts with a homogeneous sonar-

gray interior commonly surrounded by a well-

defined bright annulus on the sonar-facing edge

were interpreted as flat-topped, steep-sided "pan-
cake" constructs (Fig. 2c and d). The remaining

volcanoes commonly were more amorphous and

generally lacked a distinct contrast between their

edge and interior. They were interpreted as irregu-
lar masses of lava and sediment and classified as

"heaps" ( Fig. 2b). In a few cases amorphous heaps

were found to form elongated ridges and were

designated "ridge mounds". Rare, generally large

seamounts with prominent radiating, sonar-bright

spines probably representing flank rift zones (Vogt

and Smoot, 1984) were classified as "stars". The

classification is not perfect. For one, sonar bright-

ness is a function not only of topography, but also

of the cm-scale roughness of the surface and near-

surface materials (Barone and Ryan, 1990). In
some cases it was difficult to determine whether

brightness variations were caused only by topogra-

phy or were also influenced by the distribution of
sonar-bright lava and sonar-dark sediment.

Indeed, as will be discussed in greater detail later,

the limited bathymetry available for pancake sea-

mounts shows that they are not as steep-sided or

flat-topped as they appear to be in sidescan imag-

ery. Second, regardless of the brightness problem,
simply classifying the seamounts was often difficult

and somewhat subjective. The seamounts have a

range of morphologies that do not necessarily
represent distinct end-members. The reader is

urged to consult other seamount studies that

employ side-scan sonar for further discussion of

these and other problems (e.g., Searle, 1983;

Fornari et al., 1987a; Barone and Ryan, [990;

Scheirer and Macdonald, 1995).

The approximate positions of the seamounts

were found from fiducial marks on the mosaic

edges and by comparison to an unpublished

accompanying map (prepared by R. Holcomb).

Maximum and minimum diameter were compiled

for each seamount. Special geomorphological fea-

tures associated with the seamounts, such as the

presence of summit craters, landslides, and ero-

sional features, also were compiled. These data are

listed in Appendix A.

An attempt was made to measure seamount

heights from the bathymetric maps of Chase et al.

(1992). However, because the maps were produced

by interpolation of scattered bathymetric measure-

ments, they generally lacked the spatial resolution

to identify most seamounts. In addition, no maps
were available for the western half of the HEEZ

at the time of this study. HEEZ data from

Seabeam, a wide-beam echo sounder superior to

GLORIA in characterizing seamount shapes, cover

few of the regions where seamounts are found in

this study. Thus, except for two GLORIA bathym-

etry measurements discussed later, height was not

investigated.
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3. Observations and results

3.1. Quantitative characteristics

Over the area of the Hawaii EEZ, 390 seamounts

greater than 1 km in diameter were found (Figs. l

and 2; Appendix A). This gives an areal density
of 164 seamounts per 106 km 2 for this size range.

Factoring out the ~ 10% of the region occupied

by the Hawaiian Ridge, the abundance is 182
volcanoes/106 km 2.

The diameters of the HEEZ seamounts range

from ~ l to 57 km. Only 18 seamounts (5%) are

larger than 15 kin. Plotting relative abundance vs.
diameter of seamounts <16km in diameter in

2-km bins shows that the modal diameter group

is between 2 and 4 km (Fig. 3). The number of

seamounts increases fairly steadily down to diame-

ters of 2 kin, after which there is a large drop.

This decrease is probably due to the difficulty in

identifying small seamounts with the available
data.

In order to compare the size distribution of the
HEEZ seamounts to other Pacific data sets, the
cumulative seamount abundance as a function of

diameter was plotted in Fig. 4 and fit to the

exponential equation:

v(D) = Vo exp (- _D) ( 1)

where v(D) is the cumulative abundance of sea-

mounts of diameter d>D per unit area; vo thc

total number of seamounts of all sizes greater than

zero per unit area; and _-i the characteristic

diameter (Jordan et al., 1983; Smith and Jordan,
1988). :t determines the slope of the abundance-di-

ameter exponential line fit, with greater character-

istic diameters giving shallower slopes. _ and vo

were computed using the methods of Jordan et al.

0_
-t-,-,

E
t_

"o

c--

E
2_

'v'-

Vl
v

B
t-

o

t-
o

.w

¢0

ii

3 5 7 9 11 13 15

Diameter (km)

T_r r -w. T-- _'----r---' I ' I , - T--T_TT_-7- 7-q

HEEZ Total (N=372) 4

NW of Murray FZ (N=62) , -]
Between Murray and Molokai FZs (N=245) -[

• SE of Molokai FZ (N=65) 1

!
t

Fig. 3. Diamctcr vs. fractional abundance, normalized to the number of seamounts in each of the four regions. The bins are 2 km

wide, centered on the value listed, inclusive at their lower boundary and exclusive at their upper. Seamounts with diameters greater

than 16 km are not included.
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I km wide, centered on the value listed, inclusive at their lower boundary and exclusive at their upper. Open circles were eliminated

in the statistical analysis to compute v0 and :c _. The theoretical cumulative counts are not actual values, but assume a statistically

derived number of seamounts larger than the maximum size found, as explained in Smith and Jordan (1988).

(1983) and Smith and Jordan (1988). c_ _ and v0

for the whole HEEZ, minus the area of the

Hawaiian Ridge, are 4.16+0.11 km and 309_+ 17

seamounts/106 km 2, respectively (Fig. 4).

3.2. Morphology

The distribution of the seamounts as a function

Of morphologic class is shown in Fig. 5. Out of

the volcano population, 127 (33%) were classified

as heaps (Fig. 2c), 38 (10%) were categorized as

cones (Fig. 2b), 6 (2%) were labeled stars, and 3

(1%) were called ridge mounds. The remaining 216

(55%) were classified as pancakes (Fig. 2c and d).

The seamounts are generally bilaterally symmet-

ric. They commonly exhibit distinct morphologic

features and the compilation reveals the most

prevalent forms (Fig. 6). Sixty-two volcanoes, or
16% of the data set, have one or more central

craters (Figs. 2e-f). Forty-three (11%) are sur-
mounted by one or more mounds (Fig. 2g and h).

Seventeen (4%) consist of an apparent grouping

of coalesced volcanoes that together make up a

larger structure (Figs. 2b and g). Nine (2%) have

edges that are truncated (Fig. 2b). Nine (2%) have

landslides on their flanks (Fig. 2h). Three (1%)

are cut by graben (Fig. 2i), with strikes of

ENE WSW (the one pictured in Fig. 2i), NE SW,
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and NW-SE. The remaining volcanoes (260; 67%)

lack these special features.

To gain some insight into the cross-sectional

shapes of the HEEZ seamounts, wide-beam echo-
sounding measurements were retrieved from raw

bathymetric records. Depth measurements were

restricted to lines directly below the ship, so that

only two profiles crossing seamounts were

obtained. One profile, at 27.4 _ N, 178.4-E, is

shown in Fig. 7. The seamount as seen on the

GLORIA mosaic is shown in Fig. 2c. Maximum

height above the seafloor along the cross-section
is 42 m and the width is 4.4 km. This gives a cross-

section aspect ratio (height/diameter) of 0.01. In
contrast, most Pacific seamounts have aspect ratios

near 0.1, although some are as low as 0.03 (Smith,

1988). This profile may be through the center of

an anomalously low aspect ratio seamount. More

likely, the seamount probably has an aspect ratio
somewhat larger than 0.01, but the profile is on

the flank of the structure. Another profile, near

21.5N, 163.TW (Fig. 8) has a maximum height

beneath the track of 305 m. It is 8.9 km wide along

track, giving a cross-section aspect ratio of 0.03.

Its steepest slopes, enhanced in appearance by the

vertical exaggeration, are at the base. Although
both of these seamounts look like pancakes in the

GLORIA mosaic, one is clearly much flatter than

the other. This is a reflection of the difficulty of

visually distinguishing the morphology of anything
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feature is present.

near nadir. The problems with nadir viewing also

make it difficult to assess the position of the

bathymetric track atop the seamount.

3.3. Regional variations

Regional variations were examined to see if

location or tectonic setting affected the areal

density, size distribution, and characteristics of

the HEEZ seamounts. In general, seamount distri-

bution is clumpy, with only a few isolated

volcanoes (Fig. 1). In some cases, the seamounts

are densely clustered and two or more are merged,

forming a single "coalesced" edifice (see above).

The seamounts are concentrated mostly north of

the islands. Within this region, some seamounts

are aligned along the same trend as the fracture

zones (Fig. 2a). In the south-central region, many

seamounts are aligned along a trend parallel to

the Necker Ridge (Fig. 1). Fewer seamounts are
located in the west-central and southeast-central

regions of the map area. Within 1_ x 1°

quadrangles away from the Hawaiian Arch, the

minimum number of seamounts is zero, and the

maximum number is 18 (24 25-N, 160-161_W,
within the southern Musicians seamounts and

between the Murray and Molokai FZ's). No

geographic clustering of volcanoes by class

(Fig. 5) or distinguishing feature (Fig. 6) is

apparent.
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The Murray and Molokai FZ's trend roughly

perpendicular to the strike of the Hawaiian Ridge
and divide the HEEZ into three tectonic regions.

In the area northwest of the Murray FZ, which

includes _40% of the HEEZ, 67 seamounts larger

than l km were found, for a density of 78

seamounts/106 km 2 (area excludes the Hawaiian

Ridge). The theoretical areal density of seamounts

of all sizes (Vo) and characteristic diameter (_ _)

are (212+__28)/106 km 2 and 17.7_+0.4 km, respec-

tiveIy (Table 1). The 40% of the HEEZ between

the Murray and Molokai FZ's has 250 seamounts

larger than 1 km (292/106 km2). vo and :_ ' are
503_+34 seamounts/106 km 2 and 4.48+_0.13km,

respectively (Table !). This region contains the
Pliocene Pleistocene North Arch lava flows and

associated vents (Clague et al., 1990). The remain-

ing 20% of the HEEZ southeast of the Molokai
FZ has 73 observed seamounts larger than 1 km

(171/106 kmZ). vo is 187+26 seamounts/ 106 km 2

and :_-1 is 4.88+0.32 km (Table I). A correlation

of magnetic anomalies adjacent to the Cretaceous
quiet zone (Atwater and Severinghaus, 1988) indi-

cates that the seafloor between the Murray and

Molokai FZ's is _17 Myr younger than the

adjacent tectonic regions, so that the youngest

crust in this region of the Pacific has the most
seamounts.

The seamounts SE of the Molokai FZ and
between the two fracture zones have modal diame-

ters of 2-4 km like that found in the overall HEEZ

(Fig. 3). Northwest of Murray the modal diameter

is larger, at 4 6 km. The seamounts southeast of
the Molokai FZ in the 2 4-km bin represent 60%

of the population of this region, the largest fraction

occupied by any 2-km bin for the three tectonic

regions and the overall HEEZ.

No prominent trends of seamount diameter par-

allel to the strike of the Hawaiian Ridge are

apparent (Fig. 9a). Seamount morphologic classes

show no trends or clumping in this direction nor

do they favor any particular tectonic zone. Plotting
diameter vs. distance perpendicular to the strike

of the Murray and Molokai FZ's shows that

seamounts near the fracture zones have, on

average, smaller diameters and are fewer in number

than more distal ones (Fig. 9b and c, respectively).

The distribution of morphologic classes relative to
the fracture zones is random. Note that the irregu-

lar boundary of the map area somewhat inhibits

a completely rigorous statistical analysis of sea-
mount distribution.

Table 1

Pacific seamount areal density (vo) and characteristic diameter (:¢ ')

Region vo v2 v 6 _ _ Source

(km)

HEEZ 309_+17(182) 191+11 (171) 73_+4(54) 4.16__+0.11

NW of Murray fracture zone 212_+28 (78) 189+25 (75) 151 +20 (28) 17.684-0.36

in IIEEZ

Between Molokai and Murray 503+34 (292) 322+22 (276) 132+9 (91) 4.48+0.13

fracture zones in IIEEZ
SE of Molokai fracture zone t87+26 (171) 124_+_17(156) 55+8 (33) 4.88+0.32

in HEEZ
Pacific (average of 8 areas) 5440 + 650 3.17 + 0.4

Between Clarion and Murray 6750_+2050 2.57+0.38

fracture zones, East Pacific ("Area 1")

Between Murray and Mendocino 1660_+_ 650 3.08 + 0.67

fracture zones, East Pacific ("Area 2"')

this study

this study

this study

this study

Jordan et al. (1983);

Smith and Jordan (1988)

Smith and Jordan (1988)

Smith and Jordan (1988)

Values of v for an area of 10 _ km2; subscript of v is the seamount diameter (km) equal to and above which theoretical cumulative

seamount abundances were computed; values in parentheses are actual abundances per 106 kin-'. :t _ for areas "1"" and "2" converted

from characteristic height by assuming a seamount height to diameter (aspect) ratio of 0.1.
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Fig. 9. a. Seamount diameter vs. distance (km) from a line perpendicular to the strike of the Hawaiian Ridge that intersects 33N,

177_E (near the northwest extent of the HEEZ).

b. Seamount diameter vs. distance (kin) from the strike of the Murray Fracture Zone. Negative values are west of the fracture

zone, positive _'alues are east. The eastern end of the plot is near the Molokai Fracture Zone.
c. Seamount diameter vs. distance (kin) from the strike of the Moh)kai Fracture Zone. Negative values are west of the fracture

zone, positive values are east. The western end of the plot is near the Murray Fracture Zone.

4. Comparisons to other Pacific seamounts

4. I. Abundances and distributions

The theoretical concentration of seamounts

from the exponential model (v0) of 309_+ 17 per
106 km z in the HEEZ is much less than that

determined in most other Pacific regions using

modern high-resolution sonar surveys (Table2)

(Smith, 1991). Smith and Jordan (1988), in their

study of seamount statistics in eight areas of the
Pacific, estimated an average % of 5440+650

seamounts/10 _ km _. This was based on 11,506 km
of Seabeam tracks in the eastern Pacific in which

186 seamounts having heights from 100 to 1100 m

were found. None of the areas in their study

included the HEEZ. The two closest regions are
their areas 1 and 2. Area 1 is between the Clarion

and Murray FZ's and extends from the eastern

HEEZ boundary to near the southern Californian
and northern Mexican coasts. Area 2 is between

the Murray and Mendocino FZ's and extends

from north of the HEEZ to near the northern
Californian coast. The theoretical areal densities

in areas 1 and 2 are 6750+_2050 and 1660_+ 650

seamounts/106 km _, respectively. The lesser theo-
retical abundance of seamounts in area 2 relative

to area I (i.e., north and south of the Murray FZ,

respectively) is consistent with the theoretical areal

den sity contrasts found here (212 _+28 vs. 503 +_34 )

(Table 1 ). Thus, although the absolute abundances

of seamounts differ between this study and that of
Smith and Jordan, the decrease in predicted abun-

dances going north across the Murray FZ agree.

The alignment of some HEEZ seamounts along
the trends of fracture zones is analogous to sea-

mount chains aligned parallel to the spreading

direction and transform faults adjacent to the

modern EPR (Batiza and Vanko, 1983; Fornari

et al., 1984; Macdonald et al., 1984; Lonsdale,

1985; Macdonald, 1989; Scheirer and Macdonald,

1995). It is therefore likely that these seamounts

are about the same age as the underlying crust.
For EPR-derived seamounts, the abundance con-
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trasts across the fracture zones can be explained

in two ways (Bemis and Smith, 1993): (I) at the
EPR, more seamounts were produced on one side

of a fracture zone than on the other side; and (2)

volcanic production was episodic through time at
the EPR, resulting in different seamount abun-

dances on crust of different age.

Localized igneous activity since leaving the EPR

could also contribute to the greater abundance of

seamounts between the Murray and Molokai FZ's.
Some of the Musicians seamounts in this region

are up to 15 Myr younger than the crust upon
which they rest and may result from an old hotspot
that resided off-axis from the ancestral EPR

(Pringle, 1993). The P[iocene Pleistocene North
Arch lava flows show that even more recent igne-

ous activity has occurred in this region. The litho-

sphere in this region is younger and thinner than
that on the other side of the fracture zones and

may allow more decompression melting from a

hotspot source (Phipps Morgan et al., 1995).
Finally, the GLORIA images show that some

seamounts in the region are aligned next to and

along the same trend as the Necker Ridge, suggest-

ing a contemporaneous age that is younger than

the underlying crust. Thus, in addition to the dated

Musicians, other seamounts may' be young.

However, unequivocal resolution of the question

of whether or not great abundances of young
seamounts exist must await future sample collec-

tion and analysis.
Two factors may account for the overall low

relative abundance of HEEZ seamounts. The first

is sediment cover. =Sediment thickness is, on

average, less in areas 1 and 2 of Smith and Jordan

(1988) than in the HEEZ (Winterer, 1989). There

are no strong variations _in biological productivity

between these regions, so that the main reason for
the contrast in thickness is the younger crust in

areas 1 and 2. Assuming a sediment deposition

rate of 2.5 m/Myr (Moore et al., 1994) and an

age of HEEZ crust between 72 Ma (magnetic
anomaly 33) and 130 Ma (anomaIy M10) (Atwater

and Severinghaus, 1988), sediment cover on EPR-

derived HEEZ seamounts should range from 180
to 325 m. This estimate is consistent with 235 m

of sediment found in cores from Ocean Drilling

Program Sites 842 and 843 south of the Hawaiian

Arch at 19_N, 159-W (Hull, 1993). Assuming the

HEEZ seamounts have aspect ratios of 0.1,250 m

of sediment should decrease their diameters by

2.5 km and bury them completely if they are
smaller. The low backscatter of sediment relative

to basalt should make buried seamounts difficult

to see in GLORIA imagery, even if some topo-
graphic signature is preserved. If this sediment is

"removed" by increasing the diameter of the sea-

mounts by 2.5 kin, v0 nearly doubles to 576_+58

seamounts/106 km 2. This value is still far lower

than the values of Smith and Jordan (1988).
Furthermore, the estimate is too liberal if some of

the seamounts formed since leaving the EPR,

because they should have less sediment cover.
The different methods used to identify sea-

mounts are probably a significant additional

factor. Smith and Jordan (1988) used bathymetric

tracks, not visual imagery, for identification. In

the earlier studies, misidentification of volcanoes

or erroneous assumptions in extrapolating bathy-

metric tracks to large areas could have overesti-
mated the number of seamounts. In contrast, the

criteria in this study are strictly visual. Seamounts
with sonar-brightnesses similar to the surrounding

seafloor should be virtually invisible on the

GLORIA mosaic. Thus, this study may underesti-
mate the number of seamounts.

The relative lack of and small size of seamounts

near the Murray and Molokai FZ's (Figs. 1 and

9b, c) is inconsistent with other areas of the Pacific

where this has been studied. Based on their analysis
of the distribution of seamounts near the EPR on

the Cocos Plate, Batiza and Vanko (1983) pro-

posed that magma ascent and seamount pro-
duction are favored near fracture zones. However,

Scheirer and Macdonald (1995) found that the

heights and abundances of seamounts near EPR

discontinuities are indistinguishable from those

near mid-segments. A lack of seamounts near

fracture zones might be caused by a reduction in

magma supply or mantle upwelling near spreading
axis discontinuities (Scheirer and Macdonald,

1995). Whether or not this applies to the HEEZ

portion of the Murray and Molokai FZ's when

they were near the ancestral EPR is uncertain. As

discussed elsewhere in this paper, it is likely that

some seamounts in the HEEZ formed after leaving
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the EPR, making the interpretation of seamount
distribution near the fracture zones somewhat

ambiguous. At the very least, it is clear that

fracture zones need not necessarily be loci for

seamount production.

4.2. Dimensions

Diameters of the HEEZ seamounts are similar

to those elsewhere in the Pacific. In both regions,

abundance is inversely proportional to diameter

as discussed previously in relation to Eq. (1). This

is further illustrated in Fig. 10, where the fraction
of seamounts as a function of diameter in the

HEEZ is compared to seamounts near the EPR

between 8 _ and 17°N (Scheirer and Macdonald,

1995) and on the Nazca Plate (Searle, 1983). In
the case of the HEEZ and Nazca, the latter of

which was also studied with GLORIA, the bin

with the greatest abundance is 2-4 km. The bin

with greatest abundance in the EPR study is
between 4 and 6 km. In all three cases abundances

decline fairly systematically away from the modal

bin. The decline at lower sizes is likely due to
resolution limitations.

The characteristic diameter (:_- ]) of the HEEZ

seamounts is 4.16_+0.11 km compared to
3.17+0.4km estimated for the whole Pacific

(Jordan et al., 1983; Smith and Jordan, 1988).

Converting the characteristic heights of Smith and
Jordan (1988) to characteristic diameters by

assuming a typical seamount aspect ratio of 0.1

(Smith, 1988) yields an ._ 1 of 2.57+0.38 and

3.08 +_0.67 km for their areas l and 2, respectively

(Table 1 ). Area l, between the Clarion and Murray

FZ's, is tectonically analogous to the HEEZ

regions between the Molokai and Murray FZ's
and SE of the Molokai FZ, which have characteris-
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tic diameters of 4.48+0.13 and 4.88_+_0.32km,

respectively. NW of the Murray FZ, _-1 is

17.7 + 0.4 kin, considerably greater than the value
of 3.08_+0.67 km found in Smith and Jordan's

area 2 (between the Murray and Mendocino FZ's).

At face value, these statistics indicate that sea-

mount abundance increases less with decreasing

diameter in the HEEZ compared to analogous

regions in the Pacific and the Pacific overall. This

cannot be explained by thicker sediment in the

HEEZ, because sediment deposition should uni-

formly lower diameters, decreasing the estimated

number of seamounts of all sizes per unit area

(Vo), but not altering the slope of the abun-

dance diameter distribution [exp (-TD)]. The rel-

atively high characteristic diameters in the HEEZ
are therefore indicative of either a lower seamount

abundance compared to the rest of the Pacific or,

as discussed previously, differences between the

identification methods used in this study and that

of Smith and Jordan (1988).

4.3. Morphology

The shapes of Pacific seamounts vary, and the
nomenclature and classification schemes differ

from author to author. Common categories are

"cones", "truncated cones", "shields", and "fiat-

topped volcanoes". Guyots and some seamounts

are commonly described as having "star" or "star-

fish" shapes. The classes of HEEZ seamounts

identified here, the "cones", amorphous "heaps",

"pancakes", and "stars" represent fairly well the

range of seamount morphologies in the Pacific,

both near the rise axis and in intraplate settings.

At the EPR, the range of seamount sizes

increases with distance from the axis. Only small

constructs are near the axis and an increasing
number of larger ones are found farther away

(Smith and Jordan, 1988; Scheirer and Macdonald,

1995). Similarly, morphology changes from mainly

small conical and dome-shaped seamounts near

the axis to an increasing abundance of irregular

and polygonal volcanoes at greater distances to

those with "upturned soup bowl" shapes (flat-

topped with convex upward flanks) in the outer-

most regions (Fornari et al., 1984, 1987a). The

small conical volcanoes probably are equivalent to

the HEEZ cones and the dome-shaped volcanoes

are similar to the heaps and some pancakes. The

"upturned soup bowls" are closest to the HEEZ

pancakes in morphology. If seamounts form close

together, they may form volcanic ridges (Batiza,

1989), analogous to the "ridge mounds" identified

here. If the seamounts are large, the development
of flank rift zones may give them star-like shapes

in planview like those seen here (although this

morphology has mostly been attributed to guyots)

(Batiza and Vanko, 1983; Vogt and Smoot, 1984;

Batiza, 1989; Mammerickx, 1989).
Most seamounts in the Pacific Plate interior

were formed near, then transported away from the

EPR (Fornari et al., 1987b; Abers et al., 1988;

Smith and Jordan, 1988; Smith, 1991). Thus, it is
not surprising that the morphology of seamounts

in intraplate settings is similar to that of seamounts

near the spreading center. For example, the occur-

rence of dome and truncated cone shaped volca-
noes within the Pacific Plate is common. Hollister

et al. (1978) noted a concentration of the former

in the Philippine Sea and the latter in the northwest

Pacific. Searle (1983) found 214 intraplate sea-

mounts greater than 1 km wide in GLORIA images
of the Nazca Plate. Of the volcanoes more than

4 km in diameter, 70% consist of steep-sided (mean

and maximum slopes of 18° and 36 °, respectively),

"truncated cones" with summit plateaus that are

slightly concave upward.

Most of the secondary features of the HEEZ

seamounts have been documented in other regions
as well. Calderas or craters on seamounts are

common in some regions (Searle, 1983; Fornari

et al., 1984, 1987a). For example, Searle (1983)

found that out of the 214 seamounts surveyed by
GLORIA on the Nazca Plate, ~45% had "calde-

ras" (defined as depressions greater than 1 km in
diameter) or "craters" (<! km wide). This com-

pares to 17% found in this study. In contrast,

summit depressions are completely lacking in other

areas, such as the western Pacific and Philippine

Basin at depths between 2000 and 5000m

(Hollister et al., 1978). The smaller mounds found

on ~ 10% of the HEEZ seamounts (Figs. 2g and

h) may in many cases be comparable to spine-like

bulges that project through the sediment at other
intra-plate Pacific volcanoes (e.g., Hollister et al.,
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1978). Examples of coalesced seamounts (Figs. 2c

and g) exist in other Pacific locales as well (Batiza

and Vanko, 1983; Searle, 1983). Searle (1983)

found that at least 4% of the seamounts imaged

by GLORIA on the Nazca Plate have overlapping
relations. This matches the 4% value found for the

Hawaii EEZ. Features interpreted as landslides

(Fig. 2h) may exist on other Pacific seamounts too
(Searle, 1983). Normal faults on seamounts, such

as those splitting some of the seamounts in the

HEEZ (Fig. 2i), are also found on seamounts atop

EPR-parallel faults and fissures (Fornari et al.,

1987a; Edwards et al., 1991) and in intra-plate

settings (Searle, 1983). However only one sea-

mount graben, that striking NW-SE, has an orien-

tation expected for extensional stresses caused by

seafloor spreading or lithospheric flexure. To the

best of this author's knowledge volcanoes that
look like the HEEZ seamounts with truncated

edges (Fig. 2b) have not been reported elsewhere,
although this is not surprising considering their

rarity in the HEEZ. Unfortunately, multibeam

bathymetry and side-scan sonar from multiple

angles needed to better characterize this enigmatic
class of seamounts are unavailable.

5. Discussion

The similarity between the morphology and
dimensions of HEEZ seamounts and those else-

where in the Pacific suggests that their modes of
formation were similar. Two end-member models

have been proposed for the formation of sea-

mounts at the EPR which account for the change

in size and morphology of near-axis seamounts

with distance from the axis (Fornari et al., 1984,
1987a; Smith and Jordan, 1988; Batiza, 1989;

Scheirer and Macdonald, 1995): (1) all seamounts

form near the axis and evolve as they are carried
away by plate motion (Fornari et al., 1984, 1987a;

Batiza, 1989; Scheirer and Macdonald, 1995), or

(2) the time interval over which seamounts form

is relatively short, so that their size and morphol-

ogy are dependent on their distance from the rise

(Barone and Ryan, 1990). The GLORIA data

alone cannot determine which model is more appli-
cable to the HEEZ seamounts.

However, the alignment of seamounts along

trends parallel to the Necker Ridge and the high

areal density of seamounts between the Murray

and Molokai FZ's seen in the GLORIA images

suggest that post-EPR igneous processes were not
limited to the formation of some of the Musician

seamounts (Pringle, 1993) or the large
Pliocene Pleistocene North Arch flow field

(Clague et al., 1990). There are no discernible

differences in morphology between these sea-

mounts and those aligned with the fracture zones,

which probably formed at the EPR. Thus, subma-

rine volcanism in the plate interior seems capable

of producing seamounts similar to those seen near

spreading centers, regardless of the exact mecha-

nism by which this occurs.

The question of to what extent intraplate sea-
mount volcanism has occurred off-axis from the

Hawaiian Ridge has important implications for

the volcanic-tectonic history of the crust near

Hawaii. Although this study documents the char-

acteristics of HEEZ seamounts and strongly sug-

gests that previously undocumented post-EPR

seamounts exist, more definitive data are needed.

Samples are sorely needed from these seamounts

to find out if they derive from near the ancestral

EPR or formed later. Geochemistry and ages must

be determined. The limited sampling to date indi-

cates that seamounts born near the EPR, including

the Musicians, derive from a more depleted mantle
source than volcanoes in the Hawaiian chain

(Batiza and Vanko, 1984; Hess, 1989; Pringle,

1992, 1993; Pringle et al., 1990). The North Arch

lavas also seem to derive from a relatively depleted

mantle source but are more alkalic than the major-

ity of Hawaiian lavas (Clague et at., 1990). Thus,

geochemical analyses should help determine where

the seamounts formed. A more unequivocal test

of seamount origin is dating. Radiometric and

paleomagnetic (for seamounts not formed during

the Cretaceous quiet interval) ages can be deter-

mined for relatively unaltered samples. Thickness

of sediment cover, thickness of weathering rinds,

and dating of sediment in contact with the samples

can also be used to estimate age. Dating of the
seamounts will determine if the seamounts formed

on the periphery of the EPR, near the Hawaiian
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chain, or somewhere in between. Clearly, much

important and exciting work remains.
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Appendix A

Listed are data for the seamounts in the HEEZ examined in this study. Longitudes and latitudes are

shown to 0.1 _ although in some cases the accuracy is coarser. Diameters are the average of maximum and

minimum widths.

ID Lat. Long. Type Secondary feature(s) Ave. dia.

CN ) (-W) (km)

NW of Murray:

1 27.9 167.6 heap crater(s) 8.8

2 27,7 167.8 heap graben 7.5

3 27.3 168.0 heap crater(s) 4.4

4 28.1 170.2 pancake 2.5

5 29.0 171.6 cone summil mound 3.3

6 28.6 171.9 pancake summit mound 5.7

7 2816 t72,0 pancake coalesced, summit mound 8.8

8 28.5 t72,3 heap 7.0

9 28.7 172,9 pancake 3.8

10 27.4 173.3 pancake 3.8

I 1 29.2 174.7 pancake crater(s), truncated 4.3

12 29.4 174.8 pancake 3.6

13 29.1 174.9 heap crater(s) 8.2

14 29.6 175.0 pancake 5.0

15 29.6 175. I pancake 4.0

16 24.0 175,5 pancake 6.1

17 23.9 175,8 pancake 2.6

18 25.6 175,9 pancake 2.9

19 26.9 176.0 heap 18.3

20 29.6 176.2 pancake summit mound 6.3

21 30.7 176.3 cone 5.3

22 30.6 176.3 heap 4.9

23 30.6 176.3 heap coalesced 4.5

24 30.6 176.5 pancake 8.1

25 30.5 176.8 pancake 5.3
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Appendix A (continued)

ID Lat. Long. Type Secondary feature(s) Ave. dia.

(-N) (_W) (km)

26 31.4 [ 76.9 pancake 4.8

27 30.5 176.9 heap crater(s) 4.8

28 30.7 177.1 pancake 4.5

29 31.3 177.1 pancake 3.5

30 31.3 [ 77. I pancake 5.9

31 30.5 177.2 heap 3.3

32 25.6 177.2 heap 19.4

33 32.0 177.4 cone 3.9

34 29.8 [ 77.4 pancake 8.0

35 24.7 177.7 pancake 5.8

36 26.2 177.8 heap? 22.8

37 27.7 177.9 pancake crater(s) 6.6

38 29.6 178.0 pancake 7.8

39 32.0 178. I pancake landslide 1.9

40 29.6 178.3 pancake landslide, summit mound 4.8

41 27.0 178.4 pancake 4.9

42 31.0 178.5 pancake 1.7

43 26.8 178.7 pancake crater(s), summit mound 4.4

44 25.5 L79.0 pancake 3.4

45 30.7 [79.1 pancake summit mound 4.0

46 25.7 179.3 pancake crater (s) 8.8

47 27.6 179.4 heap crater(s), landslide 5.0

48 30.3 179.5 pancake 5,2

49 26.4 179.6 pancake crater (s) 4.3

50 29.4 179.8 pancake summit mound 4.1

51 25.9 179.8 heap 22.8

52 27.4 179.9 pancake summit mound 6.3

53 27.5 180.0 pancake 1.9

54 25.4 180.0 pancake summit mound 5.1

55 27.4 180.2 heap summit mound 4.0

56 26.5 180.7 heap 4.8

57 28.3 180.8 pancake crater(s) 3.0

58 26.0 180.9 pancake coalesced 7.4

59 30.6 181.1 pancake crater(s), summit mound 6.1

60 26.6 181.2 pancake summit mound 7.5

61 27.1 181.2 pancake 6.9

62 29.9 181.6 pancake summit mound 4.9

63 28.2 181.6 pancake 6.0

64 27,4 181.6 pancake 4.4

65 29.6 181.8 pancake summit mound 7.8

66 28.0 182.0 heap crater 29.7

67 27,7 182,0 pancake crater(s), landslide 6.3

Between Murray and Molakai:

68

69

70

71

72

73

74

75

23.3 154.0 heap crater(s) 1,2

23,2 154.0 heap 2.6

23.3 154.0 heap 3.6

23.3 154.0 heap 2.7

23.3 154.1 heap 2.2

23.2 154.4 pancake 3.6

22.3 154.5 pancake summit mound 4.4

23.1 154.5 pancake 2.5
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Appendix A (continued)

ID Lat. Long. Type Secondary feature(s) Ave. dia.

('N) (-W) (km)

76 23.3 154.7 heap 2.0

77 22.4 154.8 heap 7.6

78 22.5 155.0 heap 2.8

79 23.5 155.0 pancake crater(s) 7.0

80 20.8 155.1 cone 2.1

81 22.6 155.1 pancake crater(s) 6.6

82 20.6 155.2 pancake 3.1

83 23.5 155.2 heap 3.8

84 22.7 155.3 heap crater(s) 7.2

85 23.4 155.4 heap 5.2

86 23.8 155.8 cone 3.8

87 23.9 155.9 pancake 3.3

88 23.7 155.9 cone 2.6

89 23.0 156.0 heap 7.8

90 23.7 156.0 cone 2.0

91 23.0 156.0 heap landslide 7.8

92 23.3 156.6 cone 5.8

93 23.7 156.7 heap 4.0

94 23.4 156, 7 cone 2.0

95 23.4 156.8 heap 2.0

96 23.4 156.8 heap 3.2

97 23.5 156.8 cone crater(s) 5.8

98 23.4 156.8 cone crater(s) 2.2

99 23.4 156.8 cone 2.6

100 24.4 156.8 heap 6.2

101 23.4 156.9 heap summit mound 1.8

102 23.2 156.9 cone 2.8

103 23.2 156.9 cone 1.6

104 24.0 156.9 pancake landslide 7.2

105 23.2 156.9 cone 2.0

106 23.2 156,9 cone 2.6

107 23.8 156.9 heap 6.8

108 23.3 157.0 cone 3.0

t09 24.4 157.0 pancake 6.4

1 [0 23.8 157.0 pancake 6.2

111 23.1 157.0 heap 3.4

112 23.8 157. I heap 4.7

t 13 23.1 157. t pancake 2.0

114 23.3 157. I pancake 6.6

t 15 23.1 157. I heap 3.2

116 23,2 t57.2 pancake 5.2

I 17 23.6 157.2 pancake crater(s) 4.4

1 [ 8 24.9 157.6 heap crater(s) 14.1

t 19 23.8 157.6 heap 3.4

120 23.9 157.6 heap crater(s) 2.8

121 24.9 157.6 pancake 2.8

122 23.4 157.7 heap 4,4

123 23.4 157.7 pancake 4, 8

124 24.6 157.8 heap coalesced 7,6

125 24.7 157.9 heap 10.3

126 24.2 158.0 heap 3.6

127 24.2 158.0 heap 6,6

128 24.1 158.1 heap 7,2
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Appendix A (continued)

ID Lat. Long. Type Secondary feature(s) Ave. dia.

CN) ('W) (km)

129 24.6 158.1 pancake summit mound 5.2

130 24.5 158.4 heap 3.6

131 24.5 158.4 cone 3.8

132 24.5 158.4 pancake crater (s) 3.4

I33 24.3 158.5 heap landslide 4.4
134 24.5 158.6 cone 3.8

135 23.5 158.7 pancake 10.3

136 24.3 158.7 pancake 2.9
137 24.7 158.7 cone 4.0

138 23.7 158.8 heap 7.2

139 23.4 158.9 pancake crater (s) 7.6

140 23.7 158.9 hcap 2.5

141 23.6 158.9 pancake 3.8

142 23.5 158.9 pancake 4.4

143 24.7 158.9 pancake 4.0

144 25.2 159.1 heap 2.8

145 23.6 159.1 pancake summit mound 4.2

146 23.7 159. [ heap truncated 4.2

147 25.2 159.1 heap 3.8

148 23.8 159.2 heap crater(s) 3.6

149 23.5 159.2 heap 4.5

150 23.6 159.2 pancake summit mound 3.2

151 23.7 159.2 heap coalesced 9.5

152 24.0 159.2 pancake crater(s) 4.8

153 24.0 159.3 heap 5.0

154 24.1 159.3 pancake crater(s) 4.4

155 24. ! 159.3 heap 2.2

156 24. I 159.3 heap 2.2

157 24. I 159.4 heap 2.8

158 24.1 159.4 heap 3.8

159 24.1 159.4 heap 2.7

160 24. [ 159.4 pancake 2.0

161 24.1 159.4 heap 4.2

162 24.1 159.4 pancake summit mound 2.4

163 25.3 159.5 heap 1.8

164 24.0 159.5 heap 2.8

165 25.3 159.5 pancake 1.8

166 25.3 159.5 pancake 1.2
167 25.3 159.5 cone 2.0

168 23.7 159.6 pancake coalesced 8.2

169 24.4 159.6 pancake 4.4

170 25.3 159.6 heap 4.2

171 25.2 159.6 cone 2.2

172 25.2 159.6 cone 2.4

173 25.2 159.7 cone 2.4

174 25.2 159.7 cone 1.3

175 25.2 159.7 cone 2.0

176 23.7 159.7 pancake summit mound 6.0

177 25.1 159.7 pancake 3.0

178 24.1 159.7 pancake 4.2

179 25.3 159.7 pancake coalesced 3.6

180 23.7 159.8 pancake summit mound 5.6

181 24.5 159.9 heap 5.8
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Appendix A (continued)

ID Lat. Long. Type Secondary feature(s) Ave. dia.

(°N) (-W) (km)

182 24.7 159.9 pancake 3.4

t83 24.2 160+0 heap coalesced 6.0

184 23.9 160.0 cone 2.4

185 23.7 160.0 pancake summit mound 5.6

186 24.1 160.0 heap 2.2

187 24.1 160.0 cone 2.4

188 23.9 160.0 heap 2.2

189 23.9 160.0 cone 1.6

190 24.6 160.0 heap 2.4

191 24.2 160.1 pancake coalesced 2.8

192 24+2 160.1 cone 2.2

193 24.2 160.1 heap summit mound 7.2

194 24.6 160.1 heap 2.8

195 23.9 160.1 pancake 1.4

196 24.6 160.1 heap 2.2

197 23.9 160.1 pancake 5. I

198 24.2 160.1 heap 4.0

199 23.6 160.2 pancake 5.6

200 24.3 160.2 heap crater(s) 2.0

201 24.1 160.2 cone 2.2

202 24.2 160.2 heap 2.4

203 24.9 160.2 pancake crater(s) 4.4

204 24.1 160.3 pancake 3.6

205 24+ 1 160.3 pancake summit mound 7.0

206 23.8 160.3 heap crater (s) 8.2

207 24.8 160.5 pancake 4.0

208 24.8 160.5 pancake 4.0

209 24.0 160.6 hcap crater(s) 4.3

210 23.8 160.7 pancake 5.5

211 25.2 160.7 pancake crater(s), truncated 4.3

212 25.5 160.7 pancake 3.6

213 23.8 160+8 heap crater (s) I0.5

214 25.4 160.8 pancake 1.5

215 26.1 160.8 pancake crater (s) 2.2

216 19.4 160.9 pancake crater (s) 3.9

217 24.7 160.9 pancake truncated 7.0

218 25.2 160.9 pancake 6.9

219 25.5 161.0 pancake summit mound 1.7

220 24.8 161+ 1 pancake 6.2

221 25.3 161.2 pancake grabcn 6.9

222 26.1 161.2 pancake 2.6

223 26.5 161.8 pancake 3.3

224 24.6 161.8 pancake 9.3

225 (Mendelssohn) 25.1 16[.9 ridge mound 57.0

226 24+6 162.0 pancake 4. I

227 26.7 162.2 pancake 4.3

228 24.6 162.3 pancake 7.3

229 24.3 162.3 pancake 6.3

230 24.3 162.3 pancake 6.6

231 20.1 162.4 cone 2.2

232 19.0 162.4 pancake crater(s) 7.2

233 26.5 162.4 pancake 3.1

234 21.1 162.6 pancake 4.2
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Appendix A (conthmed)

ID Lat. Long. Type Secondary feature(s) Avc. dia.

(N) (W) (km)

235 21.5 162.7

236 21.4 162.8

237 21.8 162.8

238 22.3 162.9

239 21.[ 163.1

240 22.5 163.2

241 21.5 t63.2

242 21.6 163.3

243 25.2 163.4

244 22.7 163.5

245 21.1 163.6

246 21.5 163.8

247 21.5 163.8

248 20.9 164.0

249 20.9 164,1

250 24.5 164.1

251 24.9 164.3

252 25.8 164.3

253 25.3 164.3

254 24.9 164.5

255 25.5 164.6

256 25.3 164.6

257 25.3 164.6

258 25.1 164.7

259 21.9 164.9

260 21.5 165.0

261 25.0 165.0

262 26.6 165.0

263 26.7 165.1

264 26.6 165.3

265 21.8 165.4

266 26.3 165.4

267 22.4 166.0

268 20.5 166.0

269 20.9 166.0

270 22.2 166.1

271 20.9 166.2

272 22.1 166.2

273 21.5 166.3

274 22.3 166.3

275 27.0 166.3

276 22.1 166.3

277 21.5 166.3

278 22.0 166.6

279 26.8 166.6

280 22.1 166.7

281 22.9 167.0

282 21.6 167.0

283 21.8 167.1

284 20.4 167.2

285 21.4 167.3

286 23.1 167.5

287 22.8 167,5

heap? 12.6

heap? 18.2
star 12.6

star 18.2

heap? 13.7

star 19,4

pancake 8.9

pancake summit mound 8.9

pancake cratcr (s) 5.9

star 11.4

pancake truncated 6.8

heap crater(s), summit mound 6.1

pancake craTer(s), summit mound 6.4

pancake 5.0

pancake 6.4

pancake crater(s), summit mound 5.2

heap summit mound 4.5
)ancake 2.9

_ancake 5.9

_ancake crater(s), truncated 8.8

"_ancake 2,8

"_ancake coalesced 5.8

_ancake coalesccd 5.9

"_ancake 5.3

heap hmdslide 2.8

:_ancake crater(s) 6.6

"_ancake graben 2.9

-_ancake coalesced 3.4

3ancake coalesccd 3.6

_ancake crater(s) 3.1

_ancake summit mound 3. I

heap 2.3

heap crater(s) 4.9

heap crater(s) 4.5

heap summit mound 7.0

heap 6.5

pancake crater(s) 7.6

pancake crater(s) 6.4

pancake truncated 3.0

pancake 5.5

pancake crater (s) 3.5

heap 5.8

_ancake 5.5

_ancake 9.3

:_ancake crater(s) 7.6

"_ancake 7.5

"_ancake crater (s) 6.3

_ancake 3.9

"_ancake 9.5

_ancake 2.5

")ancake 4.3

3ancake 6.5

9ancake 3.3
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ID Lat. Long. Type Secondary feature(s) Ave. dia.

(_N) (W) (km)

288 22.3 167.9 pancake 3.6

289 22.2 168.0 pancake 4.7

290 22.7 168.1 pancake 1.6

291 24.0 168.1 pancake 1.9

292 21.0 168.1 pancake 4.9

293 22.2 168.1 pancake 2.4

294 22.3 168.2 pancake 2.6

295 23.0 168.4 pancake 8.4

296 22.2 168.5 pancake 3.8

297 22.2 168.6 pancake 2.6

298 22.8 168.7 pancake truncated 6.3

299 22.8 168.9 pancake coalcsced 4.8

300 22.6 169.0 pancake 3.4

301 22.8 169.0 pancake coalesced 6.0

302 23.1 169.4 pancake 9.3

303 22.8 169.5 pancake summit mound 8.1

304 22.0 169.5 pancake coalcsccd 6.1

305 22.0 169.5 pancake coalesced 7.6

306 21.8 169.7 pancake landslide 7.3

307 22.0 169.9 pancake 8.3

308 21.9 170.0 pancake 7.6

309 22.2 170.3 pancake 8.9

310 21.8 170.4 pancake 6.8

311 22.4 172.5 pancake 6.8

312 22,2 172.7 pancake 4.4

313 22.4 172.7 pancake 6.4

314 23.3 173.8 pancake crater(s) 1.8

315 23.6 173.8 pancake truncated 5.8

316 23.3 174.6 heap 5.5

317 23. I 174.9 heap crater(s) 9.5

SE of Moh_kai:

318 19.6 151.8 pancake crater(s) 3.3

319 18.4 151,9 pancake 7.0

320 21.3 152.0 pancake 4.0

321 20.8 152.0 pancake 3.2

322 20.9 152.1 heap crater(s) 2.4

323 18.6 152.9 pancake 3.4

324 17.8 152.9 heap crater(s) 3.0

325 18.8 153.0 cone 2.0

326 20.9 153.2 pancake crater(s) 4.4

327 18,7 153.3 pancake 3.2

328 19.5 153.4 pancake summit mound 5.9

329 18.3 153.4 pancake summit mound 3.8

330 19.0 153.4 heap 1.6

331 19.0 153.4 heap 2.5

332 19.0 [53.4 hcap 1.6

333 19.0 153.4 heap crater(s) 2.2

334 18.7 153,4 heap summit mound 3.7

335 19.0 153.5 heap 1.4

336 19.0 153.5 heap 1.4

337 19.0 t53.6 heap 2.6
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Appendix A (conthmed)

ID Lat. Long. Type Secondary feature(s) Ave. dia.

(N) (W) (km)

338 19.0 153,6 heap 16.0

339 20.7 153.7 pancake crater(s) 4.6

340 20.6 153.7 pancake 5.8

341 19, I 153.8 heap 36.5

342 19.2 154.0 pancake 3.2

343 17.1 154.1 pancake 4.7

344 19.4 154,2 heap 18.2

345 20, I 154.2 cone 5.9

346 16.8 154.3 pancake crater(s) 3.0

347 16.8 154.4 pancake 2.4

348 21. I 154.4 heap 2.1

349 20.2 154.4 pancake 2.8

350 21, t 154,4 pancake 2.0

351 16,7 154.4 heap summit mound 2.5

352 16,8 154.5 heap 2. I

353 16.8 154.5 heap 3.6

354 16.9 [ 54.5 heap 2.9

355 16.7 154.5 pancake 3.0

356 16,9 154.5 heap 2.4

357 21.0 154.5 pancake 3.0

358 16.9 154.5 heap crater (s) 2.3

359 16.7 154.6 pancake 2.4

360 16.2 154.6 pancake 5.0

361 17.6 154.6 heap 3.4

362 17.6 154.7 pancake 4.8

363 [8.6 154.7 pancake summit mound 2.4

364 17.6 154.7 pancake 4.8

365 [ 6.1 154.7 heap 5,4

366 [6.4 155.4 pancake 10.1

367 16.3 155.5 pancake 5.8

368 [ 6.7 [ 56.0 heap 3.2

369 16.6 156. l heap summit mound 3.2

370 16.7 156.1 heap 2.4

371 15.8 156. I cone 2.3

372 16.0 156,4 pancake 1.6

373 [ 6. l 156,6 heap 13.9

374 16. I 156.6 heap 9,4

375 18.7 156.9 heap 34.2

376 (Jaggar) I9.3 156.9 ridge mound? 27.4

377 16.3 157.0 heap 10.4

378 16.3 157.1 cone 2.4

379 (Pensacola) 18.3 157.2 star 18.3

380 15.7 157.2 cone 1.4

381 15.9 157.6 pancake 2.0

382 15.9 157.6 cone 2.4

383 17.4 157.8 heap summit mound 2.4

384 l 7.0 157.9 pancake 3.6

385 (Cross) 18.7 158.1 star? 25.3

386 (Brigham) l 9. I 158.6 ridge mound? 20.6

387 (Bishop) l 8.8 159.0 heap? 25.1

388 19.8 159.2 pancake summit mound 5.2

389 19.8 159.3 pancake crater(s) 2.6

390 18.6 160.0 pancake 4.2
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